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Abstract

Big data analytic techniques associated with machine learning algorithms are playing
an increasingly important role in various application fields, including stock market
investment. However, few studies have focused on forecasting daily stock market
returns, especially when using powerful machine learning techniques, such as deep
neural networks (DNNs), to perform the analyses. DNNs employ various deep learning
algorithms based on the combination of network structure, activation function, and
model parameters, with their performance depending on the format of the data
representation. This paper presents a comprehensive big data analytics process to
predict the daily return direction of the SPDR S&P 500 ETF (ticker symbol: SPY) based on
60 financial and economic features. DNNs and traditional artificial neural networks (ANNs)
are then deployed over the entire preprocessed but untransformed dataset, along with
two datasets transformed via principal component analysis (PCA), to predict the daily
direction of future stock market index returns. While controlling for overfitting, a pattern
for the classification accuracy of the DNNs is detected and demonstrated as the number
of the hidden layers increases gradually from 12 to 1000. Moreover, a set of hypothesis
testing procedures are implemented on the classification, and the simulation results
show that the DNNs using two PCA-represented datasets give significantly higher
classification accuracy than those using the entire untransformed dataset, as well as
several other hybrid machine learning algorithms. In addition, the trading strategies
guided by the DNN classification process based on PCA-represented data perform
slightly better than the others tested, including in a comparison against two standard
benchmarks.

Keywords: Daily stock return forecasting, Return direction classification, Data
representation, Hybrid machine learning algorithms, Deep neural networks (DNNs),
Trading strategies

Introduction
Big data analytic techniques developed with machine learning algorithms are gaining more

attention in various application fields, including stock market investment. This is mainly

because machine learning algorithms do not require any assumptions about the data and

often achieve higher accuracy than econometric and statistical models; for example, artifi-

cial neural networks (ANNs), fuzzy systems, and genetic algorithms are driven by multi-

variate data with no required assumptions. Many of these methodologies have been

applied to forecast and analyze financial variables, for instance, see Vellido, Lisboa, &
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Meehan (1999); Kim & Han (2000); Cao & Tay (2001); Thawornwong, Dagli, & Enke

(2001); Bogullu, Enke, & Dagli (2002); Hansen & Nelson (2002); Wang (2002); Chen,

Leung, & Daouk (2003); Zhang (2003); Chun & Kim (2004); Shen & Loh (2004); Thaworn-

wong & Enke (2004); Armano, Marchesi, & Murru (2005); Enke & Thawornwong (2005);

Ture & Kurt (2006); Amornwattana et al. (2007); Enke & Mehdiyev (2013); Zhong & Enke

(2017a, 2017b); Huang & Kou (2014); Huang, Kou, & Peng (2017); and Nayak & Misra

(2018). A comprehensive review of these studies was conducted by Atsalakis & Valavanis

(2009) and Vanstone & Finnie (2009). With nonlinear, data-driven, and easy-to-generalize

characteristics, multivariate analysis with ANNs has become a dominant and popular ana-

lysis tool in finance and economics. Refenes, Burgess, & Bentz (1997) and Zhang, Patuwo,

& Hu (1998) review the use of using ANNs as a forecasting method in different areas of fi-

nance and investing, including financial engineering.

Recently, deep learning has emerged as a powerful machine learning technique owing to

its far-reaching implications for artificial intelligence, although deep learning methods are

not currently considered as an all-encompassing solution for the effective application of

artificial intelligence. ANNs using different deep learning algorithms are categorized as deep

neural networks (DNNs), which have been applied to many important fields, such as

automatic speech recognition, image recognition, natural language processing, drug

discovery and toxicology, customer relationship management, recommendation systems,

and bioinformatics where they have often been shown to produce improved results for dif-

ferent tasks.

Moreover, it is critical for neural networks with different topologies to achieve accurate

results with a deliberate selection of input variables (Lam, 2004; Hussain et al., 2007). The

most influential and representative inputs can be chosen using mature dimensionality re-

duction technologies, such as principal component analysis (PCA), and its variants fuzzy

robust principal component analysis (FRPCA) and kernel-based principal component ana-

lysis (KPCA), among others. PCA is a classical and well-known statistical linear method

for extracting the most influential features from a high-dimensional data space. van der

Maaten et al. (2009) compare PCA with 12 front-ranked nonlinear dimensionality reduc-

tion techniques, such as multidimensional scaling, Isomap, maximum variance unfolding,

KPCA, diffusion maps, multilayer autoencoders, locally linear embedding, Laplacian eigen-

maps, Hessian LLE, local tangent space analysis, locally linear coordination, and manifold

charting, by applying each on self-created and natural tasks. The results show that al-

though nonlinear techniques perform well on selected artificial data, none of them outper-

forms the traditional PCA using real-world data. In addition, Sorzano, Vargas, &

Pascual-Montano (2014) state that among the available dimensionality reduction tech-

niques, PCA and its versions, such as the standard PCA, robust PCA, sparse PCA, and

KPCA, are still preferred for their simplicity and intuitiveness.

Few studies have focused on forecasting daily stock market returns using hybrid machine

learning algorithms. Zhong & Enke (2017a) present a study of dimensionality reduction

with an application to predict the daily return direction of the SPDR S&P 500 ETF (ticker

symbol: SPY) using ANN classifiers. They compare various ANN models and find that

among the PCA and its two popular variants, FRPCA and KPCA, PCA-based ANN classi-

fiers are shown to be the best predictor of the ETF daily return direction over various data-

sets transformed using PCA (Zhong & Enke, 2017a). Also, Zhong & Enke (2017b) perform

a comprehensive data mining procedure, including both cluster and classification mining,
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to forecast the ETF daily return direction. They show that PCA-based ANN classifiers lead

to significantly higher accuracy than three different PCA-based logistic regression models,

including those that have successfully used fuzzy c-means clustering. Chong, Han, & Park

(2017) recently examine the advantages and drawbacks of using deep learning algorithms

for stock analysis and prediction, but their study focuses on intraday stock return

forecasting.

In this study, the daily return direction of the SPDR S&P 500 ETF is forecasted using a

deliberately designed classification mining procedure based on hybrid machine learning al-

gorithms. This process begins by preprocessing the raw data to deal with missing values,

outliers, and mismatched samples. The ANNs and DNNs, each acting as classifiers, are

then used with both the entire untransformed dataset and the PCA-represented datasets

to forecast the direction of future daily market returns. The remainder of this paper dis-

cusses the details of the study and is organized as follows. The data description and prepro-

cessing are introduced next, including the transformation of the entire data set via PCA.

The architectures, network topology, and learning algorithms of the newly developed

DNNs, along with the previously successful benchmark ANNs, both of which are used for

return direction classification, are then discussed. The forecasting procedure of three dif-

ferent datasets with the DNN classifiers are then described, together with the classification

results and the pattern of the classification accuracy relevant to the number of hidden

layers. A standard benchmark is also compared with the PCA-based ANN classifiers re-

sults. The simulation results from trading strategies based on the DNN classifiers over the

three datasets are compared to each other, and the results of the ANN-based trading strat-

egies as compared with two benchmarks are then discussed. Finally, concluding remarks

and proposed future work are provided.

Data description and preprocessing
Data description

The dataset utilized in this study includes the daily direction (up or down) of the closing

price of the SPDR S&P 500 ETF (ticker symbol: SPY) as the output, along with 60 financial

and economic factors as input features. This daily data is collected from 2518 trading days

between June 1, 2003 and May 31, 2013. The 60 potential features can be divided into 10

groups, including the SPY return for the current day and the three previous days, the rela-

tive difference in percentage of the SPY return, the exponential moving averages of the

SPY return, Treasury bill (T-bill) rates, certificate of deposit rates, financial and economic

indicators, term and default spreads, exchange rates between the USD and four other cur-

rencies, the return of seven major world indices (other than the S&P 500), the SPY trading

volume, and the return of eight large capitalization companies within the S&P 500 (which

is a market cap weighted index and driven by the larger capitalization companies within

the index). These features, which are a mixture of those identified by various researchers

(Cao & Tay, 2001; Thawornwong & Enke, 2004; Armano, Marchesi, & Murru, 2005; Enke

& Thawornwong, 2005; Niaki & Hoseinzade, 2013; and Zhong & Enke, 2017a, 2017b), are

included as long as their values are released without a gap of more than five continuous

trading days during the study period. The details of these 60 financial and economic fac-

tors, including their descriptions, sources, and calculation formulas, are given in Table 10

of the Appendix.
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Data preprocessing

Data normalization

Given that the data used in this study cover 60 factors over 2518 trading days, there invariably

exist missing values, mismatching samples, and outliers. Yet, the data quality is an important

factor that can make a difference in the prediction accuracy, and therefore, preprocessing the

raw data is necessary. Using the 2518 trading days during the 10-year period, the collected

samples from other days are initially deleted. If there are n values for any variable or column

that are continuously missing, the average of the n existing values on both sides of the missing

values are used to fill in the n missing values. A simple but classical statistical principle is

employed to detect the possible outliers (Navidi, 2011). The possible outliers are then adjusted

using a similar method to the one used by Cao & Tay (2001). Specifically, for each of the 60

factors or columns in the data, any value beyond the interval (Q1− 1.5 ∗ IQR,Q3 + 1.5 ∗ IQR) is
regarded as a possible outlier, with the factor value replaced by the closer boundary of the

interval. Here, Q1 and Q3 are the first and third quartiles, respectively, of all the values in that

column, and IQR=Q3−Q1 is the interquartile of those values. The symmetry of all adjusted

and cleaned columns can be checked using histograms or statistical tests. For example, Fig-

ure 1 includes the histograms of factor SPYt (i.e., the SPY current daily return), before and

after data preprocessing (Zhong & Enke, 2017a). It can be observed that the outliers are re-

moved, and the symmetry is achieved after adjustments.

In this study, the ANNs and DNNs for pattern recognition are used as the classi-

fiers. At the start of the classification mining procedure, the cleaned data are sequen-

tially partitioned into three parts: training data (the first 70% of the data), validation

data (the last 15% of the first 85% of the data), and the testing data (the last 15% of

the data).

Data transformation using PCA

As one of the earliest multivariate techniques, PCA aims to construct a low-dimensional rep-

resentation of the data while maintaining the maximal variance and covariance structure of

the data (Jolliffe, 1986). To achieve this goal, a linear mapping W that can maximizeWTvar (

X)W, where var(X) is the variance-covariance matrix of the data X, needs to be created.

Given that W is formed by the principal eigenvectors of var (X), PCA turns out to be an

eigenproblem var(X)W= λW, where λ represents the eigenvalues of var (X). It is also

Fig. 1 Histogram of SPY current return (left) and histogram of adjusted SPY current return (right)
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known that working on the raw data X instead of the standardized data with the PCA tends

to emphasize variables that have higher variances more than variables that have very low var-

iances, especially if the units where the variables are measured are inconsistent. In this study,

not all variables are measured at the same units. Thus, here, PCA is actually applied to the

standardized version of the cleaned data X. The specific procedure is given below.

First, the linear mapping W∗ is searched such that

corr Xð ÞW � ¼ λ�W �; ð1Þ

and corr(X) is the correlation matrix of the data X. Assume that the data X has the

format X = (X1 X2⋯XM); then corr(X) = ρ is a M ×M matrix, where M is the dimen-

sionality of the data, and the ijth element of the correlation matrix is

corr Xi;X j
� � ¼ ρij ¼

σ ij
σ iσ j

;

where.

σ ij ¼ cov Xi;X j
� �

; σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xið Þ

p
; σ j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X j

� �q
; and i; j ¼ 1; 2;…;M: ð2Þ

Let λ�¼fλ�i gMi¼1 denote the eigenvalues of the correlation matrix corr(X) such that

λ�1≥λ
�
2≥⋯≥λ�M and the vectors eTi ¼ ðei1 ei2⋯eiMÞ denote the eigenvectors of corr(X)

corresponding to the eigenvalues λ�i , i = 1, 2,… , M. The elements of these eigenvec-

tors can be proven to be the coefficients of the principal components.

Secondly, the principal components of the standardized data are presented as

Z ¼ Z1 Z2⋯ZMð Þ;

where.

ZT
w ¼ Z1wZ2w⋯ZNwð Þ;Zvw ¼ Xvw−μw

σw
; v ¼ 1; 2;…;N ; andw ¼ 1; 2;…;M ð3Þ

can be written as.

Y i ¼
XM

j¼1
eijZ j; i ¼ 1; 2;…;M ð4Þ

Using the spectral decomposition theorem,

ρ ¼
XM

i¼1

λ�i eie
T
i ð5Þ

and the fact that eTi ei ¼
PM

j¼1 e
2
ij ¼ 1 and the different eigenvectors are perpendicular

to each other such that eTi e j ¼ 0, we can prove that

var Y ið Þ ¼
XM

k¼1

XM

l¼1

eikcorr Xk ;Xlð Þeil ¼ eTi ρei ¼ λ�i ð6Þ

and

cov Y i;Y j
� � ¼

XM

k¼1

XM

l¼1

eikcorr Xk ;Xlð Þejl ¼ eTi ρe j ¼ 0: ð7Þ

That is, the variance of the ith (largest) principal component is equal to the ith largest

eigenvalue, and the principal components are mutually uncorrelated.
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In summary, the principal components can be written as the linear combinations of

all the factors with the corresponding coefficients equaling the elements of the eigen-

vectors. Different amounts of principal components can explain different proportions

of the variance-covariance structure of the data. The eigenvalues can be used to rank

the eigenvectors based on how much of the data variation is captured by each princi-

pal component.

Theoretically, the information loss due to the dimensionality reduction of the data

space from M to k is insignificant if the proportion of the variation explained by the

first k principal components is large enough. In practice, the chosen principle compo-

nents must be those that best explain the data while simplifying the data structure as

much as possible.

Neural networks for pattern recognition
Recognized as one of the most important machine learning technologies, ANNs can

be viewed as a cascading model of cell types emulating the human brain by carefully

defining and designing the network architecture, including the number of network

layers, the types of connections among the network layers, the numbers of neurons in

each layer, the learning algorithm, the learning rate, the weights among neurons, and

the various neuron activation functions. All these parameters are typically determined

empirically during the learning or training phase of the neural network modeling.

Thus, it is usually not easy to interpret the symbolic meaning of the trained results.

However, the neural networks have high tolerance for noisy data and perform very

well in recognizing the different patterns of new data during the testing stage. Also,

some efficient algorithms have recently been developed to extract the classification

rules from the trained neural networks. The backpropagation algorithm is well ac-

cepted as the most popular neural network learning algorithm, which is often carried

out using a multilayer feed-forward neural network.

Multilayer feed-forward neural networks

Among the various types of neural networks that have been developed, the multilayer

feed-forward network is most commonly used for pattern recognition, including clas-

sification, in data mining. Such a feed-forward neural network is illustrated in Fig. 2.

In Fig. 2, Xi, i = 1, 2,… , I, denotes the ith component (neuron) of the input vector (layer)

including I components (neurons); Hj, j = 1, 2,… , J, denotes the jth neuron in the hidden

layer with J neurons; and Ok, k = 1, 2,… , K, denotes the kth neuron in the output layer. The

connections between each neuron of two adjacent layers exist with empirically adjusted

weights. For example, wij denotes the weight between the ith neuron in the input layer and

the jth neuron in the hidden layer. Given enough hidden neurons, multilayer feed-forward

neural networks of linear threshold functions can closely approximate any function. The

number of hidden layers is arbitrary, depending on the complexity of the neural networks.

A boundary of 10 is usually used to differentiate shallow neural networks from DNNs. That

is, if the feed-forward neural networks involve more than 10 hidden layers, they are consid-

ered DNNS; otherwise, shallow neural networks are referred to. More details on DNNs are

given in the next section.
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Traditional feed-forward ANNs often utilize the backpropagation learning algorithm

(Rumelhart, et al., 1986) based on an iterative process where the connection weights between

the layers are adjusted repeatedly in a backwards direction, from the output layer, through the

hidden layers, and then to the first hidden layer, such that the difference between the predicted

class and the true class measured by the mean squared error (MSE) can be minimized during

the procedure. Although other sophisticated learning algorithms have been developed over

the years for specific applications, the traditional backpropagation learning is still often used

to train newly developed DNNs.

DNNs for classification

More recently, deep learning, also known as deep structured learning, hierarchical learn-

ing, or deep machine learning, has emerged as a promising branch of machine learning

based on a set of algorithms that attempt to model high-level abstractions in data by using

a deep graph with multiple processing layers composed of numerous linear and nonlinear

transformations. This concept was introduced to the machine learning community by

Dechter (1986), and later to those working with ANNs (Aizenberg et al., 2000). Researchers

in this area attempt to develop better representations and models for learning these repre-

sentations from large-scale unlabeled data, compared to shallow learning, where the num-

ber of hidden layers is usually not greater than 10.

Since the first functional DNNs using a learning algorithm called the group method of

data handling are published by Ivakhnenko (1973) and his research group, a large number

of DNN architectures, such as pattern recognition networks, convolutional neural net-

works, recurrent neural networks, and long short-term memory, have been explored. Be-

cause more hidden layers and neurons are involved in DNNs, the computational power of

DNNs is expected to be higher than traditional ANNs. However, DNNs, like ANNs, suffer

Fig. 2 Topology of a multilayer feed-forward neural network used for classification

Zhong and Enke Financial Innovation            (2019) 5:24 Page 7 of 20



from overfitting, which results from the estimation of a large number of parameters used

to define the connections among hidden layers and neurons involved in DNNs, thereby re-

ducing the model’s generalization ability.

Forecasting daily return direction of the SPDR S&P 500 ETF
This study focuses on predicting the daily return direction of the SPDR S&P 500 ETF

(ticker symbol: SPY) for the next day. The direction forecast can be either up or down. A

direction forecast (up or down) is used instead of a level forecast since this study’s objective

is to not only develop a forecasting model with high classification accuracy, but also de-

velop a model that can be used successfully in a practical trading environment. Previous

studies (e.g., Thawornwong & Enke, 2004) have shown that when developing forecasting/

trading systems, direction forecasts (up or down) perform better in a trading environment/

simulation than level forecasts (predicting the exact value of the stock or index one period

forward). While level forecasts can result in models with higher reported training/testing

prediction accuracy (greater than 90% in some instances), often these models are

over-fitted to the data to achieve these results. Consequently, such models are more likely

to suffer in a trading environment/simulation. On the other hand, since a small miss is still

a miss (e.g., predicting up but being slightly down), successful direction forecasts are more

likely to have a prediction accuracy closer to 60%; yet, these models still perform better at

these accuracy levels when simulating real-world trading since the results from these

models are more likely to be on the right side of the trade. Therefore, the following model-

ing focuses on making an accurate and ideally profitable direction forecast.

For the model testing, three different datasets are employed, with or without the use

of a PCA transformation. Trading simulations of return versus risk for the best models

are discussed later.

Use of ANN and DNN classifiers

The architecture of the DNNs considered in this study is designed as a pattern recognition

network with a large number of hidden layers (i.e., more than 10 hidden layers); the archi-

tecture of the ANNs is also designed as a pattern recognition network with the number of

hidden layers set to 10. The pattern recognition network used is typical of the type of

multilayer feed-forward neural networks that are specifically designed for classification

problems (Chiang et al., 2016; Kim & Enke, 2016; Zhong & Enke, 2017a, b). The MATLAB

R2017b software is used for the modeling and testing, and the MSE and confusion matrix

are used for the analysis and comparison, specifically for the evaluation of the performance

of the ANN and DNN classifiers. The confusion matrix consists of four correctness per-

centages for the training, validation, testing, and total dataset that are provided as inputs to

the classifiers. The percent of correctness indicates the fraction of samples that are cor-

rectly classified. A value of 0 means no correct classification, whereas a value of 100 indi-

cates maximum correct classifications. Specifically, the Neural Network Toolbox in

MATLAB R2017b functions in the following way. The training data are input to train the

model, while the validation data are input to control the classifiers’ overfitting problem al-

most simultaneously. That is, as each classifier is trained using the training data, the MSE

obtained from classifying the validation data with the trained model decreases and con-

tinues to do so for a certain amount of time; the MSE of the validation starts to increase
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when the model suffers from overfitting, resulting in the need for the training phase to be

terminated. Thus, the model can be best trained in the sense that the validation phase

achieves its lowest MSE with the trained model. After the model is trained and selected, all

training data, validation data, and testing data (untouched) are provided as inputs and clas-

sified by the trained model separately. The percentage of correctly predicted or classified

daily directions corresponding to each category can be obtained and recorded.

Table 1 shows the classification results of the traditional benchmark ANN using 12 trans-

formed datasets. It shows that the benchmark ANN classifier achieves the highest accuracy

in the testing phase over the PCA-represented dataset with 31 principal components; the

PCA-represented dataset with 60 principal components gives the second best results.

Three datasets are considered for the DNN analysis. The first dataset includes the entire

preprocessed but untransformed data, including 60 factors. The second and third datasets

are transformed datasets using PCA, with 60 and 31 principal components, respectively

(i.e., data with PCA equal to 60 and 31 are used since the benchmark ANN classifier

achieves the highest accuracy levels in the testing phase when using the PCA-represented

datasets with 31 and 60 principal components). The three sets of classification results (i.e.,

untransformed data, PCA = 60 data, and PCA = 31 data using both the benchmark ANN

and DNN classifiers) are listed in Tables 2, 3 and 4, respectively. Please note that in Tables

2, 3 and 4, the first row with the number of hidden layers equal to 10 represents the per-

formance of the traditional benchmark feed-forward ANN.

Comparison of classification results

Once again, the first row in Tables 2, 3 and 4 provides the classification results using the

benchmark ANN classifier (with 10 hidden layer neurons), while the remaining rows pro-

vide the results from the various DNN classifiers (with the number of hidden layers greater

than 10). In each of the three tables, it can be observed that as the number of hidden layers

increases from 12 to 28, the accuracy of the classification in the testing phase typically in-

creases, reaching the highest values of 58.6 (in Table 2), 59.9 (in Table 3), and 59.9 (in Table

4) when the number of hidden layers equals 28, 16, and 22, respectively. However, after the

number of hidden layers becomes larger than 30 or 35, the accuracy of the classification

Table 1 The ANN classification results using 12 transformed datasets

PCs Training Validation Testing Overall

1 54.8 53.6 56.8 54.9

3 55.2 53.3 57.3 55.2

6 54.9 53.6 57.3 55

10 56.4 54.6 57.3 56.3

15 56.3 53.3 57.6 56

22 55.2 54.6 58.1 55.5

26 55.1 53.1 58.1 55.2

31 57.5 57.3 58.1 57.5

34 56.2 56 57.3 56.4

37 55 54.4 57 55.2

40 56.2 56.2 56.2 56.2

60 57.5 54.1 58.1 57.1
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for the testing data stops climbing and drops or converges to values that are close to the

results using the ANN classifiers (which includes 10 hidden layers), except for one case

where the transformed data with PCs = 60 and the number of hidden layers = 500 is con-

sidered. Note that the overfitting issue appears to be under control, in part since all the

ANN and DNN classifiers are strictly trained with the same criteria, such that for each

classifier the four correction percentages of the classification, corresponding to the train-

ing, validation, testing, and entire data sets cannot be significantly different from each

other; that is, the absolute value of the percentage difference must be within a defined

threshold, for example, 5% (Zhong & Enke, 2017a, 2017b).

It is also observed that after the data are transformed via PCA, the average classification

accuracy in the testing phase increases significantly. Moreover, the DNN-based classifica-

tion using the transformed data with PCs = 31 achieves the highest average accuracy. To

verify the phenomena in a statistical manner, a set of paired t-tests at the significance level

of 0.05 are conducted and the test results are given in Table 5.

Since the P-values of the paired t-tests are much less than 0.05, we reject the null hy-

potheses and conclude that when using the DNN classifiers, the transformed dataset with

PCs = 31 produces the highest average classification accuracy, while the DNN classifiers

show the poorest performance over the entire preprocessed and untransformed dataset at

the significance level of 0.05. Note that the values inside the parentheses in Tables 2, 3 and

4 represent the MSEs for each classification. In general, the higher the correctness percent-

age, the smaller the corresponding MSEs.

Simulation
While a higher classification accuracy for a financial forecast should lead to better

trading results, this is not always the case. Therefore, in this section, a trading

Table 2 Classification results with ANN/DNN classifiers using entire untransformed data

# of hidden layers Training (MSE) Validation (MSE) Testing (MSE) Total (MSE)

10 57.3 (0.3058) 53.8 (0.3164) 57.3 (0.3124) 56.8 (0.3084)

12 57.5 (0.3055) 54.1 (0.3129) 57.3 (0.3110) 56.9 (0.3074)

14 57.8 (0.3041) 53.8 (0.3127) 57.6 (0.3075) 57.2 (0.3059)

16 58.6 (0.3034) 54.9 (0.3160) 58.1 (0.3099) 57.9 (0.3063)

18 58.2 (0.3045) 53.3 (0.3143) 58.1 (0.3095) 57.5 (0.3067)

20 59.1 (0.3052) 54.4 (0.3186) 58.4 (0.3146) 58.3 (0.3086)

22 57.7 (0.3041) 54.1 (0.3169) 58.1 (0.3099) 57.2 (0.3069)

24 57.0 (0.3071) 55.7 (0.3139) 58.1 (0.3066) 57 (0.3081)

26 55.4 (0.3144) 54.9 (0.3245) 58.1 (0.3143) 55.8 (0.3159)

28 54.6 (0.3163) 54.6 (0.3175) 58.6 (0.3074) 55.2 (0.3151)

30 54.5 (0.3163) 53.1 (0.3232) 58.1 (0.3215) 54.8 (0.3181)

35 58.3 (0.3050) 54.9 (0.3169) 57.8 (0.3121) 57.7 (0.3079)

40 56.3 (0.3354) 53.3 (0.3584) 57.0 (0.3399) 56.0 (0.3395)

45 58.0 (0.3055) 53.8 (0.3201) 57.0 (0.3113) 57.2 (0.3085)

50 58.3 (0.3034) 53.6 (0.3252) 57.3 (0.3134) 57.4 (0.3081)

100 54.5 (0.3354) 53.3 (0.3353) 57.0 (0.3219) 54.7 (0.3334)

500 55.4 (0.3474) 53.8 (0.3570) 57.3 (0.3386) 55.5 (0.3475)

1000 57.3 (0.3383) 54.1 (0.3521) 57.3 (0.3383) 56.8 (0.3404)

Zhong and Enke Financial Innovation            (2019) 5:24 Page 10 of 20



Table 3 Classification results with ANN/DNN classifiers using transformed data with PCs = 60

# of hidden layers training (MSE) validation (MSE) testing (MSE) total (MSE)

10 58.2 (0.3062) 54.1 (0.3110) 57.8 (0.3091) 57.5 (0.3074)

12 56.9 (0.3079) 53.3 (0.3137) 58.1 (0.3066) 56.6 (0.3086)

14 57.9 (0.3041) 54.6 (0.3135) 57.8 (0.3084) 57.4 (0.3062)

16 59.4 (0.3020) 55.4 (0.3128) 59.9 (0.3056) 58.9 (0.3042)

18 56.7 (0.3071) 54.6 (0.3109) 58.9 (0.3089) 56.7 (0.3080)

20 58.8 (0.3052) 54.4 (0.3109) 59.2 (0.3074) 58.2 (0.3064)

22 57.3 (0.3065) 55.4 (0.3133) 59.4 (0.3083) 57.3 (0.3078)

24 56.9 (0.3080) 54.9 (0.3099) 58.4 (0.3082) 56.8 (0.3083)

26 55.9 (0.3101) 56.0 (0.3105) 58.4 (0.3088) 56.3 (0.3099)

28 57.8 (0.3057) 56.5 (0.3105) 59.4 (0.3079) 57.9 (0.3067)

30 56.2 (0.3076) 53.6 (0.3152) 58.1 (0.3104) 56.1 (0.3092)

35 56.6 (0.3066) 56.2 (0.3134) 58.1 (0.3081) 56.8 (0.3078)

40 59.8 (0.2999) 54.9 (0.3125) 57.6 (0.3095) 58.7 (0.3032)

45 56.3 (0.3096) 54.6 (0.3163) 57.3 (0.3113) 56.2 (0.3109)

50 55.2 (0.3103) 53.6 (0.3154) 57.3 (0.3078) 55.3 (0.3107)

100 56.9 (0.3077) 53.1 (0.3205) 57.6 (0.3221) 56.4 (0.3117)

500 55.5 (0.3345) 54.9 (0.3309) 59.9 (0.3162) 56.1 (0.3312)

1000 58.4 (0.3240) 55.7 (0.3392) 58.1 (0.3285) 57.9 (0.3269)

Table 4 Classification results with ANN/DNN classifiers using transformed data with PCs = 31

# of hidden layers Training (MSE) Validation (MSE) Testing (MSE) Total (MSE)

10 56.1 (0.3067) 54.4 (0.3121) 58.9 (0.3095) 56.3 (0.3079)

12 61.6 (0.3030) 56.8 (0.3253) 58.4 (0.3141) 60.4 (0.3080)

14 54.6 (0.3237) 54.9 (0.3111) 58.9 (0.3051) 55.3 (0.3190)

16 61.0 (0.2980) 56.5 (0.3087) 59.4 (0.3084) 60.1 (0.3011)

18 54.9 (0.3145) 55.4 (0.3160) 59.2 (0.3091) 55.6 (0.3139)

20 55.0 (0.3096) 56.5 (0.3083) 59.7 (0.3079) 56.0 (0.3092)

22 55.6 (0.3097) 56.8 (0.3120) 59.9 (0.3059) 56.4 (0.3095)

24 54.1 (0.3105) 54.1 (0.3133) 58.9 (0.3132) 54.8 (0.3113)

26 56.9 (0.3228) 54.4 (0.3191) 58.6 (0.3125) 56.8 (0.3207)

28 57.1 (0.3049) 54.9 (0.3136) 59.4 (0.3081) 57.1 (0.3067)

30 54.8 (0.3152) 54.4 (0.3142) 58.4 (0.3085) 55.2 (0.3140)

35 58.2 (0.3049) 55.4 (0.3167) 58.9 (0.3083) 57.9 (0.3072)

40 55.3 (0.3111) 54.6 (0.3163) 58.6 (0.3071) 55.7 (0.3113)

45 59.2 (0.3003) 55.7 (0.3147) 58.1 (0.3081) 58.5 (0.3036)

50 57.9 (0.3040) 54.9 (0.3140) 58.4 (0.3070) 57.5 (0.3059)

100 58.6 (0.3044) 54.4 (0.3131) 58.9 (0.3061) 58.0 (0.3060)

500 60.4 (0.3117) 55.4 (0.3436) 58.6 (0.3233) 59.4 (0.3182)

1000 57.7 (0.3237) 56.0 (0.3405) 58.9 (0.3293) 57.6 (0.3271)
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simulation is conducted to see if the higher prediction accuracy from the DNN classi-

fiers indicates higher profitability among the three datasets with different representa-

tion. This study is based on predicting the direction of the SPDR S&P 500 ETF (ticker

symbol: SPY) daily returns. Consequently, we modify the trading strategy for classifi-

cation models defined by Enke & Thawornwong (2005) as follows.

If UPt + 1 = 1, fully invest in stocks or maintain, and receive the actual stock return

for the day t + 1 (i.e., SPYt + 1); if UPt + 1 = 0, fully invest in one-monthT-bills or main-

tain, and receive the actual one-monthT-bill return for the day t + 1 (i.e., T1Ht + 1).

Here UP denotes the SPY daily return direction as predicted by the models de-

scribed earlier. In addition, the actual one-monthT-bill return for the day t + 1 is

T1Htþ1 ¼ discount rate
100 � term 360 days ¼ T1tþ1

100
� 28 days
360 days

¼ T1tþ1

100
� 7
90

; ð8Þ

where T1t + 1 is the one-monthT-bill discount rate (or risk-free rate) percentage on

the secondary market for business day t + 1. The original data for T1 are obtained

from the St. Louis Federal Reserve Economic Research database (https://fred.

stlouisfed.org/series/TB4WK) and are exactly the “4-week” T-bill discount rate per-

centage on the secondary market; the data are listed on the website as “Monthly” in

terms of the “Frequency” feature of the data but is a 28-day measure.

In practice, at the beginning of each trading day, the investor decides to buy the

SPY portfolio or the one-monthT-bill according to the forecasted direction of the

SPY daily return. It is assumed for this research that the money invested in either a

stock portfolio or T-bills is illiquid and detained in each asset during the entire trad-

ing day. Dividends and transaction costs are also not considered. In addition, for this

study, both leveraging and short selling when investing are forbidden. The trading

simulation is done for all the classification models over each testing period, including

376 samples of the three data sets considered; the first day of the 377-day testing

period is excluded owing to the lack of a direction prediction for that day. The result-

ing mean, standard deviation (or volatility), and Sharpe ratio of the daily returns on

investment generated from each forecasting model over each set of testing data are

then calculated, with or without the PCA involved. The Sharpe ratio is obtained by

dividing the mean daily return by the standard deviation of the daily returns. There-

fore, the higher the Sharpe ratio, as a result of a higher mean daily return and/or a

lower standard deviation or volatility of daily returns, the better the trading strategy.

The relevant results are presented in Tables 6, 7 and 8.

As shown in Table 6, the trading strategies based on the DNN classifiers for the en-

tire untransformed data generate higher Sharpe ratios than the trading strategy based

on the ANN classifier, except for three cases where the number of hidden layers is 40,

50, or 500. In Table 7, the trading strategies from the DNN classification over the

PCA-represented data with PCs = 60 result in higher Sharpe ratios than the

ANN-based trading strategy, except when the number of hidden layers equals 14, 40,

Table 5 Comparison of classification results from DNN classifiers for three data sets

Null hypothesis Alternative hypothesis P-value

μentire = μpcs60 μentire < μpcs60 1.9144e-04

μpcs60 = μpcs31 μpcs60 < μpcs31 0.0050
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45, or 50. Table 8 shows that the Sharpe ratios that are generated by the trading strat-

egies using the DNN classification over the PCA-represented data with PCs = 31 are

mostly higher than the Sharpe ratios generated by the ANN-based trading strategy,

except for those cases where the number of hidden layers is 12, 24, 26, 45, 50, or

1000. The Sharpe ratios and their corresponding hidden layer numbers that are rele-

vant to these exceptions are highlighted in Tables 6, 7 and 8.

To compare the three sets of Sharpe ratios (17 values in each set) that are obtained

from the trading strategies based on the DNN classifiers for the entire untransformed

data and the PCA-represented data with PCs = 60 and PCs = 31, another group of

paired t-tests are performed at the significance level of 0.05. The P-values of the tests

are included in Table 9.

Since the P-values are all much larger than 0.05, we have strong evidence of insig-

nificant differences among the mean Sharpe ratios from the three different trading

strategies at the significance level of 0.05. However, with more careful observation of

these P-values (and using other significance levels, e.g., 0.40), it is reasonable to con-

clude that in general the trading strategies guided by the DNN classification based on

the PCA-represented data perform slightly better than the ones based on the entire

untransformed data, although these trading strategies perform similarly.

Conclusions and suggestions for future work
A comprehensive big data analytics procedure using hybrid machine learning algo-

rithms has been developed to forecast the daily return direction of the SPDR S&P 500

ETF (ticker symbol: SPY). Ideally, researchers look to apply the simplest set of

Table 6 Simulation results with ANN/DNN classifiers using entire untransformed data

# of hidden layers Mean of daily return Std. of daily return Sharpe ratio

10 7.8493E-04 0.0077 0.1015

12 7.4376E-04 0.0071 0.1051

14 8.3735E-04 0.0077 0.1090

16 8.2346E-04 0.0078 0.1056

18 1.0000E-03 0.0073 0.1411

20 7.8827E-04 0.0077 0.1030

22 8.4592E-04 0.0077 0.1103

24 8.6660E-04 0.0073 0.1187

26 8.8574E-04 0.0074 0.1196

28 8.3240E-04 0.0075 0.1112

30 8.4049E-04 0.0079 0.1071

35 8.6501E-04 0.0077 0.1119

40 7.9263E-04 0.0079 0.1006

45 8.2000E-04 0.0073 0.1125

50 7.7529E-04 0.0077 0.1004

100 8.4306E-04 0.0076 0.1110

500 7.9310E-04 0.0079 0.1007

1000 7.9541E-04 0.0078 0.1019
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algorithms to the least amount of data, with both the most accurate forecasting re-

sults and the highest risk-adjusted profits being desired. We have also considered this

standard for this research.

The analytic process starts with data cleaning and preprocessing and concludes with an

analysis of the forecasting and simulation results. The comparison of the classification and

simulation results is done with statistical hypothesis tests, showing that on average, the ac-

curacy of the DNN-based classification is significantly higher than the PCA-represented

data over the entire untransformed data set. More specifically, the DNN-based classifica-

tion for the PCA-represented data set with PCs = 31 achieves the highest accuracy. It is

also observed that as the number of DNN hidden layers increases, a pattern regarding the

classification accuracy (as compared to the ANN classifier) emerges, with the overfitting

issue remaining under control. In addition, over three data sets with different representa-

tions, the trading strategies using the DNN classifiers perform better than the ones using

the ANN classifiers in most cases. Although in general there is no significant difference

among the trading strategies from the DNN classification process over the entire untrans-

formed data set and two PCA-represented data sets, the trading strategies based on the

PCA-represented data perform slightly better.

In previous studies (Zhong & Enke, 2017a, 2017b), the PCA-ANN classifiers are shown

to give a higher prediction accuracy for the daily return direction of the SPY ETF for the

next day than the FRPCA-ANN classifiers, KPCA-ANN classifiers, and logistic regression

classifiers, with or without PCA/FRPCA/KPCA involved. Also, the trading strategies based

on the PCA-ANN classifiers perform better than the other strategies based on the other

classifiers. Moreover, when using PCA, all classification model-based trading strategies per-

form better than the benchmark one-monthT-bill strategy; the trading strategies from the

Table 7 Simulation results with ANN/DNN classifiers using transformed data with PCs = 60

# of hidden layers Mean of daily return Std. of daily return Sharpe ratio

10 7.6471E-04 0.0076 0.1011

12 8.7298E-04 0.0074 0.1178

14 7.0400E-04 0.0077 0.0911

16 9.0078E-04 0.0076 0.1181

18 9.0041E-04 0.0075 0.1202

20 9.6420E-04 0.0075 0.1294

22 9.0986E-04 0.0077 0.1188

24 7.8212E-04 0.0076 0.1036

26 9.6026E-04 0.0070 0.1375

28 9.5506E-04 0.0071 0.1354

30 9.3496E-04 0.0074 0.1271

35 7.9479E-04 0.0077 0.1035

40 5.8272E-04 0.0075 0.0778

45 7.0538E-04 0.0074 0.0953

50 5.9244E-04 0.0071 0.0832

100 8.3309E-04 0.0079 0.1061

500 9.3984E-04 0.0074 0.1275

1000 8.7984E-04 0.0076 0.1150
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ANN classification mining procedure perform better than the benchmark buy-and-hold

strategy. Thus, when combined with the new results as illustrated in Tables 2, 3, 4 and 6, 7

8 it can be concluded that among the machine learning techniques considered in this study

series, the PCA-DNN classifiers with the proper number of hidden layers can achieve the

highest classification accuracy and result in the best trading strategy performance.

With additional hidden layers and more complicated learning algorithms, DNNs are rec-

ognized as an important and advanced technology in the fields of computational

intelligence and artificial intelligence. However, DNNs are still regarded as a black box with

less clear theoretical confirmations of the learning algorithms that are used in common

deep architectures, such as the stochastic gradient descent methodology. These DNN

learning algorithms actually increase the computation time as a large number of hidden

layers and neurons are included. This area of research needs to receive more attention and

effort in the future.

Table 8 Simulation results with ANN/DNN classifiers using transformed data with PCs = 31

# of hidden layers Mean of daily return Std. of daily return Sharpe ratio

10 8.0339E-04 0.0076 0.1064

12 7.4933E-04 0.0071 0.1057

14 9.3477E-04 0.0072 0.1292

16 9.3504E-04 0.0072 0.1294

18 9.6857E-04 0.0071 0.1359

20 8.0664E-04 0.0072 0.1115

22 9.6978E-04 0.0077 0.1267

24 5.7661E-04 0.0069 0.0836

26 7.7980E-04 0.0076 0.1031

28 8.5625E-04 0.0078 0.1099

30 8.4888E-04 0.0075 0.1127

35 8.5513E-04 0.0078 0.1093

40 8.2210E-04 0.0076 0.1081

45 7.8532E-04 0.0075 0.1042

50 7.1064E-04 0.0077 0.0922

100 8.2574E-04 0.0073 0.1126

500 8.9993E-04 0.0077 0.1169

1000 7.9599E-04 0.0076 0.1050

Table 9 Comparison of simulation results from DNN classifiers for three data sets

Null hypothesis Alternative hypothesis P-value

μentire = μpcs60 μentire≠ μpcs60 0.6251

μpcs60 = μpcs31 μpcs60≠ μpcs31 0.8897

μentire = μpcs31 μentire≠ μpcs31 0.6635

μentire = μpcs60 μentire < μpcs60 0.3126

μpcs60 = μpcs31 μpcs60 < μpcs31 0.5552

μentire = μpcs31 μentire < μpcs31 0.3318
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Appendix
Table 10 The 60 financial and economical features of the raw data

Group Name Description Source/Calculation

Date_SPY trading dates considered finance.yahoo.com

Close_SPY closing prices of SPY on the trading
days

finance.yahoo.com

SPY return in current and three previous days

SPYt The return of the SPDR S&P 500 ETF
(SPY) in day t.

finance.yahoo.com / (p(t) - p(t-1))/
p(t-1)

SPYt1 The return of the SPY in day t-1. finance.yahoo.com / (p(t-1) -
p(t-2))/p(t-2)

SPYt2 The return of the SPY in day t-2. finance.yahoo.com / (p(t-2) -
p(t-3))/p(t-3)

SPYt3 The return of the SPY in day t-3. finance.yahoo.com / (p(t-3) -
p(t-4))/p(t-4)

Relative difference in percentage of the SPY return

RDP5 The 5-day relative difference in
percentage of the SPY.

(p(t) - p(t-5))/p(t-5) * 100

RDP10 The 10-day relative difference in
percentage of the SPY.

(p(t) - p(t-10))/p(t-10) * 100

RDP15 The 15-day relative difference in
percentage of the SPY.

(p(t) - p(t-15))/p(t-15) * 100

RDP20 The 20-day relative difference in
percentage of the SPY.

(p(t) - p(t-20))/p(t-20) * 100

Exponential moving averages of the SPY return

EMA10 The 10-day exponential moving
average of the SPY.

p(t) * (2/(10+1)) + EMA10 (t-1)
* (1-2/(10+1))

EMA20 The 20-day exponential moving
average of the SPY.

p(t) * (2/(20+1)) + EMA20 (t-1)
* (1-2/(20+1))

EMA50 The 50-day exponential moving
average of the SPY.

p(t) * (2/(50+1)) + EMA50 (t-1)
* (1-2/(50+1))

EMA200 The 200-day exponential moving
average of the SPY.

p(t) * (2/(200+1)) + EMA200 (t-1) *
(1-2/(200+1))

T-bill rates (in day t)

T1 1-month T-bill rate, secondary
market, business days, discount basis.

H. 15 Release - Federal Reserve
Board of Governors (https://
research.stlouisfed.org/fred2/series/
DGS5/downloaddata)

T3 3-month T-bill rate, secondary
market, business days, discount basis.

H. 15 Release - Federal Reserve
Board of Governors (https://
research.stlouisfed.org/fred2/series/
DGS5/downloaddata)

T6 6-month T-bill rate, secondary
market, business days, discount basis.

H. 15 Release - Federal Reserve
Board of Governors (https://
research.stlouisfed.org/fred2/series/
DGS5/downloaddata)

T60 5-year T-bill constant maturity rate,
secondary market, business days.

H. 15 Release - Federal Reserve
Board of Governors (https://
research.stlouisfed.org/fred2/series/
DGS5/downloaddata)

T120 10-year T-bill constant maturity rate,
secondary market, business days.

H. 15 Release - Federal Reserve
Board of Governors(https://
research.stlouisfed.org/fred2/series/
DGS10?catbc=1&utm_expid=
19978471-Srcl7QpGidAURO4vg_Q.1&
utm_referrer=https%3A%2F%2
Fresearch.stlouisfed.org%2Ffred2%2
Frelease%3Frid%3D18)
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Table 10 The 60 financial and economical features of the raw data (Continued)

Group Name Description Source/Calculation

Certificate of deposit rates (in day t)

CD1 Average rate on 1-month neogtiable
certificates of deposit (secondary
market), quoted on an investment
basis.

H. 15 Release - Federal Reserve
Board of Governors

CD3 Average rate on 3-month neogtiable
certificates of deposit (secondary
market), quoted on an investment
basis.

H. 15 Release - Federal Reserve
Board of Governors

CD6 Average rate on 6-month neogtiable
certificates of deposit (secondary
market), quoted on an investment
basis.

H. 15 Release - Federal Reserve
Board of Governors

Financial and economical indicators (in day t)

Oil Relative change in the price of the
crude oil (Cushing, OK WTI Spot
Price FOB (dollars per barrel)).

Energy Inormation Administration,
http://tonto.eia.doe.gov/dnav/pet/hist/
rwtcd.htm (work on cleaning the price
column first using the SPY dates as
control, then cal the relative change)

Gold Relative change in the gold price usagold.com (use FireFox to Select
All, then copy and paste to an Excel
file) (the dates used by USAGOLD
are not matching with the SPY
prices from yahoo.finance. For
example, after 06/09/2004. We still
clean/make up/delete the gold
prices based on the dates of SPY
prices from finance.yahoo.com. Use
the same procedure in the whole
data set: Take the average of the
two closest data with the missing
one in the middle. Then delete the
mismatching one, and cal the
relatvie difference as before. Another
example, the data in 2011, all Friday's
prices were recorded as Sunday's
prices, so we estimated Friday's
prices with the average of Thursday
and Sunday's prices. Then deleted
Sunday's prices. If there are n
continuous values missing, then take
the average of the n available values
on each side of these n missing
values, use the average for all n
missing values)

CTB3M Change in the market yield on US
Treasury securities at 3-month
constant maturity, quoted on
investment basis.

H. 15 Release - Federal Reserve
Board of Governors

CTB6M Change in the market yield on US
Treasury securities at 6-month
constant maturity, quoted on
investment basis.

H. 15 Release - Federal Reserve
Board of Governors

CTB1Y Change in the market yield on US
Treasury securities at 1-year constant
maturity, quoted on investment basis.

H. 15 Release - Federal Reserve
Board of Governors

CTB5Y Change in the market yield on US
Treasury securities at 5-year constant
maturity, quoted on investment basis.

H. 15 Release - Federal Reserve
Board of Governors

CTB10Y Change in the market yield on US
Treasury securities at 10-year

H. 15 Release - Federal Reserve
Board of Governors
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Table 10 The 60 financial and economical features of the raw data (Continued)

Group Name Description Source/Calculation

constant maturity, quoted on
investment basis.

AAA Change in the Moody's yield on
seasoned corporate bonds - all
industries, Aaa.

H. 15 Release - Federal Reserve
Board of Governors

BAA Change in the Moody's yield on
seasoned corporate bonds - all
industries, Baa.

H. 15 Release - Federal Reserve
Board of Governors

The term and default spreads

TE1 Term spread between T120 and T1. TE1 = T120 - T1

TE2 Term spread between T120 and T3. TE2 = T120 - T3

TE3 Term spread between T120 and T6. TE3 = T120 - T6

TE5 Term spread between T3 and T1. TE5 = T3 - T1

TE6 Term spread between T6 and T1. TE6 = T6 - T1

DE1 Default spread between BAA and AAA. DE1 = BAA - AAA

DE2 Default spread between BAA and
T120.

DE2 = BAA - T120

DE4 Default spread between BAA and T6. DE4 = BAA - T6

DE5 Default spread between BAA and T3. DE5 = BAA - T3

DE6 Default spread between BAA and T1. DE6 = BAA - T1

DE7 Default spread between CD6 and T6. DE7 = CD6 - T6

Exchange rate between USD and four other currencies (in day t)

USD_Y Relative change in the exchange rate
between US dollar and Japanese yen.

http://www.investing.com/
currencies/usd-jpy-historical-data

USD_GBP Relative change in the exchange rate
between US dollar and British pound.

http://www.investing.com/currencies/
gbp-usd-historical-data (then, take the
opposites to the changes)

USD_CAD Relative change in the exchange rate
between US dollar and Canadian dollar.

http://www.investing.com/
currencies/usd-cad-historical-data

USD_CNY Relative change in the exchange rate
between US dollar and Chinese Yuan
(Renminbi).

http://www.investing.com/
currencies/usd-cny-historical-data

The return of the other seven world major indices (in day t)

HSI Hang Seng index return in day t. finance.yahoo.com

SSE
Composite

Shang Hai Stock Exchange
Composite index return in day t.

finance.yahoo.com

FCHI CAC 40 index return in day t. finance.yahoo.com

FTSE FTSE 100 index return in day t. finance.yahoo.com

GDAXI DAX index return in day t. finance.yahoo.com

DJI Dow Jones Industrial Average index
return in day t.

finance.yahoo.com(no download
function for this one);
measuringworth.com/datasets/DJA/
result.php

IXIC NASDAQ Composite index return in
day t.

finance.yahoo.com

SPY trading volume
(in day t)

V Relative change in the trading
volume of S&P 500 index (SPY)

finance.yahoo.com

The return of the eight big companies in S&P 500 (in day t)

AAPL Apple Inc stock return in day t. finance.yahoo.com

MSFT Microsoft stock return in day t. finance.yahoo.com
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ANN: Artificial Neural Network; DNN: Deep Neural Network; PCA: Principal Component Analysis
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Table 10 The 60 financial and economical features of the raw data (Continued)

Group Name Description Source/Calculation

XOM Exxon Mobil stock return in day t. finance.yahoo.com

GE General Electric stock return in day t. finance.yahoo.com

JNJ Johnson and Johnson stock return in
day t.

finance.yahoo.com

WFC Wells Fargo stock return in day t. finance.yahoo.com

AMZN Amazon.com Inc stock return in day t. finance.yahoo.com

JPM JPMorgan Chase & Co stock return in
day t.

finance.yahoo.com
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